Controlled site-selective protein glycosylation for precise glycan structure-catalytic activity relationships.

نویسندگان

  • B G Davis
  • R C Lloyd
  • J B Jones
چکیده

Glycoproteins occur naturally as complex mixtures of differently glycosylated forms which are difficult to separate. To explore their individual properties, there is a need for homogeneous sources of carbohydrate-protein conjugates and this has recently prompted us to develop a novel method for the site-selective glycosylation of proteins. The potential of the method was illustrated by site-selective glycosylations of subtilisin Bacillus lentus (SBL) as a model protein. A representative library of mono- and disaccharide MTS reagents were synthesized from their parent carbohydrates and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. These were the first examples of preparations of homogeneous neoglycoproteins in which both the site of glycosylation and structure of the introduced glycan were predetermined. The scope of this versatile method was expanded further through the combined use of peracetylated MTS reagents and careful pH adjustment to introduce glycans containing different numbers of acetate groups. This method provides a highly controlled and versatile route that is virtually unlimited in the scope of the sites and glycans that may be conjugated, and opens up hitherto inaccessible opportunities for the systematic determination of the properties of glycosylated proteins. This potential has been clearly demonstrated by the determination of detailed glycan structure-hydrolytic activity relationships for SBL. The 48 glycosylated CMMs formed display kcat/KM values that range from 1.1-fold higher than WT to 7-fold lower than WT. The anomeric stereochemistry of the glycans introduced modulates changes in kcat/KM upon acetylation. At positions 62 and 217 acetylation enhances the activity of alpha-glycosylated CMMs but decreases that of beta-glycosylated. This trend is reversed at position 166 where, in contrast, acetylation enhances the kcat/KMs of beta-glycosylated CMMs but decreases those of alpha-glycosylated. Consistent with its surface exposed nature changes at position 156 are more modest, but still allow control of activity, particularly through glycosylation with disaccharide lactose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions*

Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence...

متن کامل

Glycan analysis of therapeutic glycoproteins

Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a...

متن کامل

N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A.

The gene encoding a XET (xyloglucan endotransglycosylase) from cauliflower ( Brassica oleracea var. botrytis ) florets has been cloned and sequenced. Sequence analysis indicated a high degree of similarity to other XET enzymes belonging to glycosyl hydrolase family 16 (GH16). In addition to the conserved GH16 catalytic sequence motif EIDFE, there exists one potential N-linked glycosylation site...

متن کامل

Glycan Remodeling of Human Erythropoietin (EPO) Through Combined Mammalian Cell Engineering and Chemoenzymatic Transglycosylation.

The tremendous structural heterogeneity of N-glycosylation of glycoproteins poses a great challenge for deciphering the biological functions of specific glycoforms and for developing protein-based therapeutics. We have previously reported a chemoenzymatic glycan remodeling method for producing homogeneous glycoforms of N-glycoproteins including intact antibodies, which consist of endoglycosidas...

متن کامل

Glycoprotein synthesis: an update.

2.2. Assembly Strategies 139 2.2.1. Linear Assembly 139 2.2.2. Convergent Assembly 139 2.2.3. Elaborative and Mixed Assembly Strategies 139 2.2.4. Native Ligation Assembly 140 3. Chemical Glycoprotein Synthesis 143 3.1. Indiscriminate Convergent Glycosylation 143 3.2. Chemoselective and Site-Specific Glycosylation 145 3.3. Site-Selective Glycosylation 147 3.4. Native Ligation Assembly 151 4. En...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2000